Outline of principles
[prepared by Ryan Womack, rwomack@rutgers.edu, 1/2014]

• CLEAR VISION
 — Make the data stand out. Avoid superficiality
 — Use visually prominent graphical elements to show the data.
 — Use a pair of scale lines for each variable. Make the data region the interior of the rectangle formed by the scale lines. Put tick marks outside of the data region.
 — Do not clutter the data region [legend outside, etc.].
 — Do not overdo the number of tick marks.
 — Use a reference line when there is an important value that must be seen across the entire graph, but do not let the line interfere with the data.
 — Do not allow data labels in the data region to interfere with the quantitative data or to clutter the graph.
 — Avoid putting notes, keys, and markers in the data region. Put keys and markers just outside the data region and put notes in the legend or in the text.
 — Overlapping plotting symbols must be visually distinguishable.
 — Superposed data sets must be readily visually discriminated.
 — Visual clarity must be preserved under reduction and reproduction.

• CLEAR UNDERSTANDING
 — Put major conclusions into graphical form. Make legends comprehensive and informative.
 — Error bars should be clearly explained [error bars can be 1) sample s.d. of data; 2) estimate of s.d. of a quantity; 3. confidence interval of a quantity]
 — When logarithms of a variable are graphed, the scale label should correspond to the tick mark labels (can show both original and log scale on opp. sides of graph)
 — Proofread graphs.

• SCALES
 — Choose the range of the tick marks to include or nearly include the range of the data.
 — Subject to the constraints that scales have, choose the scales so that the data fill up as much of the data region as possible.
 — It is sometimes helpful to use the pair of scale lines for a variable to show different scales.
 — Choose appropriate scales when graphs are compared [use panels when one scale won’t work].
 — Do not insist that zero always be included on a scale showing magnitude [except for bar charts].
 — Use a logarithmic scale when it is important to understand percent change or multiplicative factors.
 — Showing data on a logarithmic scale can improve resolution.
 — Use a scale break only when necessary. If a break cannot be avoided, use a full scale break. Do not connect numerical values on two side of a break.

• GENERAL STRATEGY
 — A large amount of quantitative information can be packed into a small region.
 — Graphing data should be an iterative, experimental process.
 — Graph data two or more times when it is needed.
 — Many useful graphs require careful, detailed study.
TECHNIQUES

- logs, % change, residuals
- point graph [2d histogram], histogram, percentile graph [and with comparisons/reference line], box plot [Tukey]
- dot charts - best way to attach label to quantity 2-way dot chart {multiway} grouped dot chart
- overlap is dealt with by jitter, distinguishable symbols {+sunflowers}, taking log or other transformation
- box plots for high multiples
- visually distinguish curves and points [this has gotten easy by now]

THREE OR MORE VARIABLES

- Framed-rectangle graphs
- scatterplot matrices
- interaction/brushing
- 3d wireframe or stereogram (points)

PERCEPTION

- pie v. dot chart
- distance and detection
- length in a stacked bar
- 45 degree banking
- strive for clarity