
Data Publication 2
Ryan Womack

2024-10-03

Table of contents

1 Why Data Publication? 2

2 Data Repositories 2
2.1 Generalist Repositories . 2
2.2 Specialized repositories . 3

3 R package creation 3
3.1 The R packages book, by Wickham and Bryan 3
3.2 Install and load packages . 3
3.3 Outline of the creation of a little package . 6

3.3.1 Caution! . 6
3.3.2 Create_package function . 6
3.3.3 Git . 8
3.3.4 Writing a function . 8
3.3.5 Checking your work . 10
3.3.6 Filling in the details . 10
3.3.7 Some additional useful commands . 11
3.3.8 Finishing up the little package . 11
3.3.9 Review of command sequence . 11

3.4 Additional miscellaneous highlights from R Packages 13
3.4.1 Code style [extracts from R Packages book] 13
3.4.2 Testing [extracts from R Packages book] 14
3.4.3 Documentation [extracts from R Packages book] 15
3.4.4 Licensing [extracts from R Packages book] 16
3.4.5 Data [extracts from R Packages book] 16

Copyright Ryan Womack, 2023. This work is licensed under CC BY-NC-SA 4.0

This workshop first reviews repositories for data publication such as Dataverse, ICPSR, OSF,
Zenodo, and more. Then we turn to a detailed discussion of building R packages.

1

https://creativecommons.org/licenses/by-nc-sa/4.0/

1 Why Data Publication?

Sharing data is a way to maximize the impact and usefulness of your research, and is
increasingly mandated by research funders.

Data should be shared in a manner that is FAIR, enabling the data to be:

• Findable,
• Accessible,
• Interoperable, and
• Reusable

We should also CARE for our data, respecting indigenous data governance, and managing
our data according to the following principles:

• Collective Benefit
• Authority to Control
• Responsibility
• Ethics

The NIH is the most recent major US funding agency to promulgate data sharing guidelines
and requirements, so their materials are as good a place as any to get more information…

NIH on Sharing Scientific Data

2 Data Repositories

2.1 Generalist Repositories

NIH lists several Generalist Repositories which are all good places to deposit data when
more specialized repositories are not available.

• Dataverse
• Dryad
• Figshare
• IEEE Dataport
• Mendeley Data
• OpenICPSR - social science emphasis, free to use for Rutgers due to our institutional

membership in ICPSR
• Open Science Framework
• Synapse
• Vivli
• Zenodo

A comparison of many of these repositories is available.

italic entries are recommended for their ease of use and suitability for a wide range of data.

2

https://www.go-fair.org/fair-principles/
https://www.gida-global.org/care
https://sharing.nih.gov/data-management-and-sharing-policy/sharing-scientific-data/repositories-for-sharing-scientific-data
https://sharing.nih.gov/data-management-and-sharing-policy/sharing-scientific-data/generalist-repositories
https://dataverse.org/
https://datadryad.org/
https://figshare.com/
https://ieee-dataport.org/
https://data.mendeley.com/
https://openicpsr.org
https://osf.io/
https://www.synapse.org/
https://vivli.org/
https://zenodo.org/
https://doi.org/10.5281/zenodo.3946719

2.2 Specialized repositories

Specialized repositories, if available, are the best place to deposit data with special charac-
teristics. These repositories are built to handle and showcase certain kinds of data.

To discover specialized repositories, such as the Protein Data Bank, use

Re3data - the Registry of Research Data Repositories

And for more information, use

FAIRsharing.org

3 R package creation

R Packages are an excellent way to distribute collections of data and code. Following on the
release of the 2nd edition of Hadley Wickham’s R Packages book, this workshop reviews the
package creation process, covering prerequisites, the steps involved in creating a complete
package, and following up on documentation and testing.

3.1 The R packages book, by Wickham and Bryan

This is a brief introduction to R package creation, taking as its text the book R Packages,
2nd edition by Hadley Wickham and Jennifer Bryan. This book is freely available on the
web, so please consult for further details of topics that are only outlined here. The second
edition has been finalized in June 2023.

3.2 Install and load packages

The fundamental packages required to create an R package are devtools, roxygen2, and
testthat. Please install these with the following commands if they are not already available
on your system. These will not install by default if you just attempt to run this R markdown
file.

We will use the pak package for installation as a more complete approach to package man-
agement. Replace the pkg commands with install.packages() versions if you prefer.

install.packages("pak", dependencies=TRUE)
library(pak)
pkg_install("devtools")
pkg_install("roxygen2")
pkg_install("testthat")

devtools::session_info()

3

https://www.rcsb.org
https://www.re3data.org/
https://fairsharing.org/
https://r-pkgs.org
https://r-pkgs.org
https://r-pkgs.org
https://pak.r-lib.org/

Let’s load those libraries now.

library(devtools)

Loading required package: usethis

library(roxygen2)
library(testthat)

Attaching package: 'testthat'

The following object is masked from 'package:devtools':

test_file

We can check that we’re running recent enough versions of our software with the packageV-
ersion command for indivual packages, or session_info for our entire setup.

packageVersion("devtools")

[1] '2.4.5'

devtools::session_info()

- Session info ---
setting value
version R version 4.2.2 Patched (2022-11-10 r83330)
os Debian GNU/Linux 12 (bookworm)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz US/Eastern
date 2024-10-04
pandoc 3.2 @ /usr/lib/rstudio/resources/app/bin/quarto/bin/tools/x86_64/ (via rmarkdown)

- Packages ---
package * version date (UTC) lib source
brio 1.1.5 2024-04-24 [2] CRAN (R 4.2.2)
cachem 1.1.0 2024-05-16 [2] CRAN (R 4.2.2)
cli 3.6.3 2024-06-21 [1] CRAN (R 4.2.2)
devtools * 2.4.5 2022-10-11 [2] CRAN (R 4.2.2)

4

digest 0.6.37 2024-08-19 [2] CRAN (R 4.2.2)
ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.2.2)
evaluate 1.0.0 2024-09-17 [2] CRAN (R 4.2.2)
fastmap 1.2.0 2024-05-15 [2] CRAN (R 4.2.2)
fs 1.6.4 2024-04-25 [2] CRAN (R 4.2.2)
glue 1.7.0 2024-01-09 [1] CRAN (R 4.2.2)
htmltools 0.5.8.1 2024-04-04 [2] CRAN (R 4.2.2)
htmlwidgets 1.6.4 2023-12-06 [2] CRAN (R 4.2.2)
httpuv 1.6.15 2024-03-26 [2] CRAN (R 4.2.2)
jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.2.2)
knitr 1.48 2024-07-07 [2] CRAN (R 4.2.2)
later 1.3.2 2023-12-06 [2] CRAN (R 4.2.2)
lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.2.2)
magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.2)
memoise 2.0.1 2021-11-26 [2] CRAN (R 4.2.2)
mime 0.12 2021-09-28 [2] CRAN (R 4.2.2)
miniUI 0.1.1.1 2018-05-18 [2] CRAN (R 4.2.2)
pkgbuild 1.4.4 2024-03-17 [2] CRAN (R 4.2.2)
pkgload 1.4.0 2024-06-28 [2] CRAN (R 4.2.2)
profvis 0.4.0 2024-09-20 [2] CRAN (R 4.2.2)
promises 1.3.0 2024-04-05 [2] CRAN (R 4.2.2)
purrr 1.0.2 2023-08-10 [1] CRAN (R 4.2.2)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.2)
Rcpp 1.0.13 2024-07-17 [1] CRAN (R 4.2.2)
remotes 2.5.0 2024-03-17 [2] CRAN (R 4.2.2)
rlang 1.1.4 2024-06-04 [1] CRAN (R 4.2.2)
rmarkdown 2.28 2024-08-17 [2] CRAN (R 4.2.2)
roxygen2 * 7.3.2 2024-06-28 [2] CRAN (R 4.2.2)
rstudioapi 0.16.0 2024-03-24 [2] CRAN (R 4.2.2)
sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.2.2)
shiny 1.9.1 2024-08-01 [2] CRAN (R 4.2.2)
stringi 1.8.4 2024-05-06 [1] CRAN (R 4.2.2)
stringr 1.5.1 2023-11-14 [1] CRAN (R 4.2.2)
testthat * 3.2.1.1 2024-04-14 [2] CRAN (R 4.2.2)
urlchecker 1.0.1 2021-11-30 [2] CRAN (R 4.2.2)
usethis * 3.0.0 2024-07-29 [2] CRAN (R 4.2.2)
vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.2.2)
xfun 0.48 2024-10-03 [2] CRAN (R 4.2.2)
xml2 1.3.6 2023-12-04 [2] CRAN (R 4.2.2)
xtable 1.8-4 2019-04-21 [2] CRAN (R 4.2.2)
yaml 2.3.10 2024-07-26 [2] CRAN (R 4.2.2)

[1] /home/ryan/R/x86_64-pc-linux-gnu-library/4.2
[2] /usr/local/lib/R/site-library
[3] /usr/lib/R/site-library

5

[4] /usr/lib/R/library

--

3.3 Outline of the creation of a little package

We’ll follow along with Chapter 1 of the R Packages book and walk through the creation of
a little package, even simpler than the “toy package” presented in the text.

This will enable us to review the fundamental features of a typical package:

• functions
• version control
• documentation (roxygen2)
• testing (testthat)
• creation of a README.Rmd file

After we do this for our little package, we’ll coverage some additional details relating to the
steps above.

3.3.1 Caution!

There is a conflict when using Rmarkdown to perform some of the steps below. We’re
presenting the code in this .Rmd file since it allows us to insert explanatory text. But you
may be better off running the R_Packages.R version of this code, since that version is more
straightforward. Using Rmd causes some switching back and forth between the Rmd project
directory and the package directory we’re creating. Just a caution!

3.3.2 Create_package function

We call create_package to initiate a package. We want to start this in its own fresh directory,
not a pre-existing project or git repository. The create_package function will set up the
necessary folder structure for a package. Please EDIT the contents of the command below
to correspond to your computer’s file system. This is the one place in the code where you’ll
have to modify it. Note that to be a valid package name and to be allowed on CRAN, the
package name should:

• Contain only ASCII letters, numbers, and ‘.’
• Have at least two characters
• Start with a letter
• Not end with ‘.’

create_package("/home/ryan/R/littlePackage")

6

https://r-pkgs.org/whole-game.html

v Setting active project to "/home/ryan/R/littlePackage".

i Leaving 'DESCRIPTION' unchanged.

Package: littlePackage
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R (parsed):

* First Last <first.last@example.com> [aut, cre] (YOUR-ORCID-ID)
Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()` or friends to pick a

license
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2

i Leaving 'NAMESPACE' unchanged.

v Setting active project to "<no active project>".

This will launch a new window. To be able to continue using our script here, we have to
reopen our code (here you could just use the .R script if you want to run two RStudio
sessions - one for reading the guidance and one for the package). We also have to reload our
packages since this is a new session.

library(devtools)
library(roxygen2)
library(testthat)

The “dot files” beginning with a period (.) are used to store a history of the R session
and to tell R and git to ignore certain files. Generally we can leave these files as is and
let R worry about how to handle them. You shouldn’t need to modify these files in most
circumstances.

Likewise, the .Rproj file is usually left unmodified. This helps RStudio manage the package
folder as a project.

The NAMESPACE is also a file we won’t edit. It is used to keep track of relations between
functions that your package will use, but you can let RStudio handle this.

One of the two locations that we WILL edit are the DESCRIPTION, which is a structured
way of providing information about your package. This is what you will see when you look
up the function in the R help system, or what would be displayed if your package makes it
onto CRAN. For example, try typing ?testthat to see the description of that package.

7

The other is the R folder. This is the folder that we will put our functions into. Optionally
we could add a data folder as well, if we wanted to distribute data via our package.

It is quite convenient to use create_package to take care of all of this for us.

3.3.3 Git

We won’t go into any details about git or github usage, except to note that it is common
and desirable to use this form of version control for your work, and also for sharing and
collaboration. To initiate the use of git in any R project (not just packages), use the
command use_git. To be sure we’re committing the right directory, we use proj_set to
navigate to the directory for our package first. Select the positive option when asked if you
want to commit your files. For the purpose of our demo, you don’t have to restart RStudio
at the prompt here, but if you want to use git for real, you should. If your RStudio resets
again at this stage, you’ll have to do proj_set and reload the packages in lines 82-84 again.

proj_set("/home/ryan/R/littlePackage/")

v Setting active project to "/home/ryan/R/littlePackage".

use_git()

3.3.4 Writing a function

We are going to write a very basic function, just as an example. Keep in mind that you
can write functions to accomplish almost any task you want to in R, and write as many
of them as you want. Many packages have been born out of the gradual accumulation of
useful functions. Our function will be called funkyadd and it just adds a little modification
to addition.

funkyadd <- function(x,y)
{
x+y+1

}

Just for fun, let’s also create a randomadd function that introduces true uncertainty into the
addition process.

randomadd <- function(x,y)
{
x+y+round(rnorm(1,0,3),digits=0)

}

We can see these functions in action, attempting to add 6 and 9.

funkyadd(6,9)

8

[1] 16

randomadd(6,9)

[1] 13

We’re not here to talk about functions, but about how functions are used in packages, so
let’s move on from these examples. We use use_r to add functions to our R directory for
the our little package, as follows:

use_r("funkyadd")

[] Edit 'R/funkyadd.R'.

use_r("randomadd")

[] Edit 'R/randomadd.R'.

Copy and paste the function definitons into the editor window that pops up. Namely, lines
124-127 for funkyadd and lines 132-135 for randomadd.

Now we run load_all to bring our functions as we’ve defined them into the R workspace.
Note that we remove the previous manually created functions just to show that load_all is
working properly. Note that the library command only works for installed packages. Since
we haven’t finished with our package yet, we need to use load_all instead. We also reconfirm
that we’re in the correct project directory. Then we can check that the functions are in our
workspace, now provided directly by the package definitions. [Note that at this point we’re
no longer going to print output from our commands in this summary text, due to a conflict
between the package directory and our home directory.]

rm(funkyadd)
rm(randomadd)
setwd("/home/ryan/R/littlePackage/")
proj_set("/home/ryan/R/littlePackage/")
load_all()
funkyadd(3,5)
randomadd(3,5)

In the actual development of a package, it is recommended to commit your changes using
git as you go along, but we’ll omit those steps for clarity of exposition here.

9

3.3.5 Checking your work

R has a function to look for any errors in your package. In the terminal, you could type R
CMD check. Within R or Rstudio, use check

check()

We get a lot of output and a useful note and a warning in this case.

3.3.6 Filling in the details

Edit the DESCRIPTION file using RStudio. Just insert your own name and descriptive
information in the fields and save.

Run use_mit_license to insert a complete current license for your package. Note the ap-
pearance of the LICENSE files after this. We could also use GPL or other licenses. Use the
document command to make it finito.

use_mit_license()

If you use RStudio, open R/funkyadd.R in the source editor and put the cursor somewhere
in the funkyadd function definition. Now select Code > Insert roxygen skeleton from the
RStudio menu. A very special comment should appear above your function, in which each
line begins with #‘. RStudio only inserts a barebones template, so you will need to edit it
to add descriptive information after the #’ @___ characters.

Now we run the document command to generate Rdocumentation format files from our R
commands. We can repeat this process for randomadd. Note that we could also create
Rdocumentation (.Rd) files in a text editor, but the roxygen/document process saves us
from learning a new set of markup tags.

document()
?funkyadd
library(help="littlePackage")

Now we can get help on funkyadd with the usual ?funkyadd syntax. The NAMESPACE file
has also been updated by the document command. We can also view the overall package
description with the library(help=“littlePackage”) command

We can now check and install the package to include it in our R space. We can now load it
with a library command, although you may still want to load_all to be safe. Our functions
should work now.

check()
install()
library(littlePackage)
load_all()
randomadd(3,6)

10

We can test our package systematically by loading use_testthat and then running tests using
use_test. Note that we have to create our own tests to run them. These might check, for
example, that the results of certain functions fall into the values we expect them to take.
The use_test function will insert properly named R files into a “tests” directory, but it is
up to you to edit them into something sensible. Once tests are created, you can run them
all with the test command.

use_testthat()
use_test("funkyadd")
test()

3.3.7 Some additional useful commands

We can require the use of certain packages with the use_package command.

We can connect our project to a specific Github repository using the use_github command.

For usage on Github, we need a more complete README file. The use_readme_rmd
command will set this up for us. This creates a README.Rmd file that is structured for
typical R package usage, along with a process for generating a Github-friendly README.md
file as well. Just use the build_readme command to render the .md formatted file.

These steps are highly recommended for a working package, but we won’t try to reproduce
them in this short introduction.

3.3.8 Finishing up the little package

A final check and install once you are satisfied with all the edits on your package will finalize,
rebuild, and install the package properly.

check()
install()

3.3.9 Review of command sequence

We used the following commands to step through the creation, editing, and testing of our
package.

• create_package()
• use_git()
• use_r()
• load_all()
• check()
• use_mit_license()
• document()

11

• check() [again]
• edit the DESCRIPTION using RStudio
• install()
• use_testthat()
• use_package()
• use_github()
• use_readme_rmd()
• check() [last time]
• install() [last time]

Quoting the R
Packages book:

Here is a review of the key functions you’ve seen here, organized roughly by their role in the
development process.

These functions setup parts of the package and are typically called once per package:

• create_package()
• use_git()
• use_mit_license()
• use_testthat()
• use_github()
• use_readme_rmd()

You will call these functions on a regular basis, as you add functions and tests or take on
dependencies:

• use_r()
• use_test()
• use_package()

12

https://r-pkgs.org/
https://r-pkgs.org/

You will call these functions multiple times per day or per hour, during development:

• load_all()
• document()
• test()
• check()

3.4 Additional miscellaneous highlights from R Packages

The available package has a function called available() that helps you evaluate a potential
package name from many angles

Here are the most common gotchas that trip many of us up at first:

Package code requires new ways of working with functions in other packages. The DE-
SCRIPTION file is the principal way to declare dependencies; we don’t do this via li-
brary(somepackage). Instead name the package in the “imports” section of DESCRIPTION
file. If you want data or files to be persistently available, there are package-specific methods
of storage and retrieval. You can’t just put files in the package and hope for the best. It’s
necessary to be explicit about which functions are user-facing and which are internal helpers.
By default, functions are not exported for use by others. A new level of discipline is required
to ensure that code runs at the intended time (build time vs. run time) and that there are
no unintended side effects.

Refer to commands in long form, e.g.

dplyr::mutate

It is natural to assume that listing a package in Imports actually “imports” the package, but
this is just an unfortunate choice of name for the Imports field. The Imports field makes
sure that the packages listed there are installed when your package is installed. It does not
make those functions available to you, e.g. below R/, or to your user.

Every package mentioned in NAMESPACE must also be present in the Imports or Depends
fields.

3.4.1 Code style [extracts from R Packages book]

We recommend following the tidyverse style guide, which goes into much more detail than
we can here.

Although the style guide explains the “what” and the “why”, another important decision is
how to enforce a specific code style. For this we recommend the styler package; its default
behaviour enforces the tidyverse style guide.

There are some functions that modify global settings that you should never use because
there are better alternatives:

13

https://r-pkgs.org
https://cran.r-project.org/package=available
https://style.tidyverse.org
https://styler.r-lib.org

Don’t use library() or require(). These modify the search path, affecting what functions
are available from the global environment.Instead, you should use the DESCRIPTION to
specify your package’s requirements, as described in Chapter 9. This also makes sure those
packages are installed when your package is installed.

Never use source() to load code from a file. source() modifies the current environment,
inserting the results of executing the code. There is no reason to use source() inside your
package, i.e. in a file below R/. Sometimes people source() files below R/ during package
development, but as we’ve explained in Section 4.4 and Section 6.2, load_all() is a much
better way to load your current code for exploration. If you’re using source() to create a
dataset, it is better to use the methods in Chapter 7 for including data in a package.

Here is a non-exhaustive list of other functions that should be used with caution:

options() par() setwd() Sys.setenv() Sys.setlocale() set.seed() (or anything that changes the
state of the random number generator)

We usually manage state using the withr package we need to “Restore the state” to what
we left it . These functions do this automatically for us.

For example, change working directory using with_dir()

3.4.2 Testing [extracts from R Packages book]

testthat function is most commonly used

to setup your package to use testthat, run:

usethis::use_testthat(3)

Can create in /tests/testthat directory, any tests to run and testthat.R file to run the tests

for example:

The foofy() function (and its friends and helpers) should be defined in R/foofy.R and their
tests should live in tests/testthat/test-foofy.R.

functions use_r() / use_test() are handy for initially creating these file pairs and, later, for
shifting your attention from one to the other.

When use_test() creates a new test file, it inserts an example test.

mockery is also useful in this context.

Github Actions are recommended as a way to improve the checking and testing process.

14

https://withr.r-lib.org/
https://github.com/r-lib/mockery

3.4.3 Documentation [extracts from R Packages book]

In the devtools ecosystem, we don’t edit .Rd files directly with our bare hands. Instead, we
include specially formatted “roxygen comments” above the source code for each function1.
Then we use the roxygen2 package to generate the .Rd files from these special comments2 .
There are a few advantages to using roxygen2 :

• Code and documentation are co-located. When you modify your code, it’s easy to
remember to also update your documentation.

• You can use markdown, rather than having to learn a one-off markup language that
only applies to .Rd files. In addition to formatting, the automatic hyperlinking func-
tionality makes it much, much easier to create richly linked documentation.

• There’s a lot of .Rd boilerplate that’s automated away.
• roxygen2 provides a number of tools for sharing content across documentation topics

and even between topics and vignettes.

Roxygen comment lines always start with #’ , the usual # for a comment, followed imme-
diately by a single quote ’

To summarize, there are four steps in the basic roxygen2 workflow:

• Add roxygen2 comments to your .R files.
• Run devtools::document() or press Ctrl/Cmd + Shift + D to convert roxygen2 com-

ments to .Rd files.
• Preview documentation with ?function.
• Rinse and repeat until the documentation looks the way you want.

The title is taken from the first sentence. It should be written in sentence case, not end in
a full stop, and be followed by a blank line. The title is shown in various function indexes
(e.g. help(package = “somepackage”)) and is what the user will usually see when browsing
multiple functions.

The description is taken from the next paragraph. It’s shown at the top of documentation
and should briefly describe the most important features of the function.

Additional details are anything after the description. Details are optional, but can be any
length so are useful if you want to dig deep into some important aspect of the function.
Note that, even though the details come right after the description in the introduction, they
appear much later in rendered documentation.

The book also addresses vignettes, which allow a more in-depth view of your package
functionality

pkgdown can help you build a website for your package easily and easily manage links.

Should also have a README.md file for basic explanation (which can be generated from
an .Rmd file) and perhaps a NEWS.md file

There is even guidance on producing a logo and a hex sticker

15

https://pkgdown.r-lib.org/
https://cran.r-project.org/package=hexSticker

3.4.4 Licensing [extracts from R Packages book]

If you want a permissive license so people can use your code with minimal restrictions, choose
the MIT license with use_mit_license().

If you want a copyleft license so that all derivatives and bundles of your code are also open
source, choose the GPLv3 license with use_gpl_license().

If your package primarily contains data, not code, and you want minimal restrictions, choose
the CC0 license with use_cc0_license(). Or if you want to require attribution when your
data is used, choose the CC BY license by calling use_ccby_license().

If you don’t want to make your code open source, call use_proprietary_license(). Such
packages can not be distributed by CRAN.

We highly recommend https://choosealicense.com,

For more details about licensing R packages, we recommend Licensing R by Colin Fay

3.4.5 Data [extracts from R Packages book]

LazyData is relevant if your package makes data available to the user. If you specify Lazy-
Data: true, the datasets are lazy-loaded, which makes them more immediately available,
i.e. users don’t have to use data(). The addition of LazyData: true is handled automatically
by usethis::use_data()

If you want to store R objects and make them available to the user, put them in data/ Each
file should be an .rda file created by save() containing a single R object, with the same name
as the file. The easiest way to achieve this is to use usethis::use_data().”

It is also common for data packages to provide, e.g., a csv version of the package data that
is also provided as an R object. This data is placed in the inst/extdata directory so that it
is visible to end users of the package in the extdata directory.

Often, the data you include in data/ is a cleaned up version of raw data you’ve gathered
from elsewhere. We highly recommend taking the time to include the code used to do this
in the source version of your package. This makes it easy for you to update or reproduce
your version of the data. This data-creating script is also a natural place to leave comments
about important properties of the data, i.e. which features are important for downstream
usage in package documentation. This data should be kept in a data-raw directory, best
handling by the usethis::use_data_raw() function.

Package data submitted to CRAN should be less than 1MB or you will need to argue for an
exemption. Also consider compression.

Use the usual method to document your dataset.

There are two roxygen tags that are especially important for documenting datasets:

16

https://choosealicense.com
https://thinkr-open.github.io/licensing-r/

• @format gives an overview of the dataset. For data frames, you should include a
definition list that describes each variable. It’s usually a good idea to describe variables’
units here.

• @source provides details of where you got the data, often a URL.

Never @export a data set.

Other uses for data are discussed in Chapter 7 of R packages

As always, Enjoy R!

17

https://r-pkgs.org

	Why Data Publication?
	Data Repositories
	Generalist Repositories
	Specialized repositories

	R package creation
	The R packages book, by Wickham and Bryan
	Install and load packages
	Outline of the creation of a little package
	Caution!
	Create_package function
	Git
	Writing a function
	Checking your work
	Filling in the details
	Some additional useful commands
	Finishing up the little package
	Review of command sequence

	Additional miscellaneous highlights from R Packages
	Code style [extracts from R Packages book]
	Testing [extracts from R Packages book]
	Documentation [extracts from R Packages book]
	Licensing [extracts from R Packages book]
	Data [extracts from R Packages book]

